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Abstract
Phase equilibrium prediction is sometimes a part of chemical process optimization, and it can
be computationally costly. With the use of matching mathematical models, surrogate
modelling is examined in this work as a method for hydroformylation optimization through a
thermomorphic multiphase system (TMS). Stated differently, we demonstrate that
substituting surrogate models for the computationally costly PC-SAFT equation of state
model can result in a large reduction in overall computing time with only a minor accuracy
loss.In the study, ANN, GP, and SVM are used as stand-in models for phase equilibria
prediction and process parameter optimization. The work shows how stand-in models may be
used to optimize large production processes in a matter of seconds rather than hours, all while
maintaining the accuracy of phase behaviour predictions.

Introduction
Sometimes resolving issues with phase equilibria calculations—which deal with the
distribution of chemical species in many phases under specific conditions—is necessary to
improve chemical processes. Numerous facets of process engineering, including reactor
design, separation procedures like distillation and extraction, and cost analyses, depend
heavily on these computations. For example, optimal reaction yield, energy, and equipment
cost requires accurate phase behaviour information. Rigid thermodynamic models, like the
PC-SAFT equation of state, are utilized for these computations because they accurately
predict phase behaviour and molecule interactions.Advanced reaction engineering, petroleum
refining, and polymer synthesis are the application areas where PC-SAFT works best in
systems with big, associating, or undesirable molecules. But once more, this accuracy raises
the issue of processing costs, particularly in process optimization where an iterative method
would be employed. According to reports, the numerical computation of PC-SAFT
parameters solves frequently nonlinear equations, which poses a computational cost problem,
particularly when the process is repeatedly carried out in high-dimensional systems or within
the context of iterative optimization.

Therefore, one of the most effective strategies to get over all of the aforementioned
difficulties is through surrogate modelling. Models developed from the original
thermodynamic models are known as surrogate models. They offer a simplified method at the
expense of computational complexity and model accuracy. Polynomial regression, machine
learning methods including Gaussian processes, artificial neural networks, and reduced order
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modelling are a few examples of how to create surrogate models. These techniques make it
possible to compute and store phase equilibrium data or create functional representations that,
in optimization processes, can be used in place of the exacting thermodynamic model.

This work investigates the use of surrogate modelling in a particular case study: 1-dodecene
hydroformylation in a thermomorphic solvent system (TMS). The hydroformylation of
alkenes to aldehydes, which involves a variety of reactants and products, solvents, and
catalysts, is an example of a reaction that typically displays complicated phase behaviour.
Phase equilibrium calculations are further complicated by TMS technology, which uses
temperature variations to induce phase separation. The computationally costly phase
equilibrium computations obtained from the PC-SAFT are practically re-established in the
current setting using a number ofG surrogate models. Here, the authors incorporate these
surrogate models into the optimization process and demonstrate that the computing efficiency
is greatly increased while maintaining good accuracy.The results also show how the surrogate
models encourage the assessment of process factors in order to enhance the operating
conditions for the hydroformylation reaction efficiency. Furthermore, the results of this study
provide credence to the notion that surrogate modelling can be used as a groundbreaking
method to improve chemical process optimization, both in its specific context and as a
multidisciplinary approach.

Methodology

Process Overview

Since n-tridecanal, which is produced by the hydroformylation of 1-dodecene, is one of the
most commonly utilized aldehydes in the fragrance, detergent, and plasticizer industries, it is
one of the most significant reactions in industrial chemistry. This procedure was created to
include a separation feature where the catalyst is recovered using a thermomorphic solvent
system (TMS). By changing the solvents according to temperature, a thermomorphic solvent
plan makes it simple to separate products from catalysts without the need for additional
solvents or further purification.

One common component of the process setup is an air stirred tank reactor (CSTR), where the
reaction is carried out.

1. A heat exchanger and other apparatus for regulating temperature parameters.

2. a decanter to separate the final mixture into the product that the catalyst thickener has
separated.

Precise phase behaviour modelling is necessary for:

 Recycling catalysts: Since rhodium is a highly active and costly catalyst, recovery and
reuse are crucial.

 Product isolation is the process of correctly separating the n-tridecanal-containing
product rich phase.

The ratios of 1-dodecene, syngas (CO and H₂), and solvents are important factors affecting
the hydroformylation process.
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 Reactor conditions: The temperature and pressure levels that affect the reaction's rate
and equilibrium position.

 Decanter operating conditions: Temperature and feed composition are two factors
that affect phase separation and catalyst retention in decanters.

Original PC-SAFT Model

In phase equilibria computations, the Perturbed Chain-Statistical Associating Fluid Theory
(PC-SAFT) model is frequently employed as a thermodynamic model. TMS systems with
certain nonideal, associated mixes benefit greatly from this, and these systems are thus very
effectively modelled.

Phase equilibria are predicted by the PC-SAFT model by the following calculations:

 Fugacity coefficients, which identify the chemical potential difference between phases.

 the equilibrium constant that links the system's composition, temperature, and pressure
to the distribution of various species across the phases.

The PC-SAFT model is computationally demanding despite its accuracy because of its:

 iterative structure, which involves applying nonlinear equations in a multi-
component system sequentially.

 MATLAB implementation: The optimization frameworks' time needs and
connectivity complexity increase when external computational resources are used.

These limitations limit PC-SAFT's suitability for optimization studies, which require a lot of
assessments in order to map out the process design space.

Surrogate Modeling Approach

New surrogate models were developed as basic models that depict phase equilibria in order to
address the computing problems of the PC-SAFT model. These are derived models that,
despite being several times quicker, mimic PC-SAFT's output accuracy performance.

The following are inputs to the surrogate models:

 Reactor conditions: temperature, pressure, and reactant and solvent concentrations.

 Conditions of the decanter: Because they affect the production of all different kinds
of meals, temperature and feed composition temperatures are critical and significant
factors.

The surrogate models' outputs:

 Gas solubility: The efficiency of syngas dissolving in the liquid phase is estimated by
gas solubility.

 Distribution coefficients: Describe the ways in which the species can be divided into
the two stages.
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 Phase classification: Ascertain if a system behaves as a single phase or as two phases
under specific circumstances.

Model Training

Three surrogate modeling techniques were explored to balance accuracy and efficiency:

1. ANNs, or artificial neural networks:

 Other setups included several hidden layers with neurons that learned every non-
linear relationship in the set by pre-activating.

 To prevent the overfitting issue, regularization techniques and backpropagation
were used for training activities.

2. Gaussian Processes (GP):

 Regression analysis was performed using RBF kernels.

 As a result, developments such as oGP models provided uncertainty
quantifications that were useful for vulnerability prediction.

3. Support Vector Machines (SVM):

 Employed for classification and regression tasks (using polynomial kernels and
Gaussian RBF).

 Separators were shown to be especially helpful with SVMs in phase
classifications.

Dataset Generation:

 The training and testing data sets were representative of the input space since they
were built using full factorial design and Latin Hypercube Sampling (LHS).

 The PC-SAFT model was used to calculate the ground-truth data used for model
training.

Performance Evaluation:

 Simple misclassification rates for phase classification and Root Mean Squared
Error (RMSE) for regression issues were used to evaluate the performance of the
created models.

 Accuracy and computational metrics were used to evaluate the chosen models'
overall performances.

Optimization Framework

IPOPT, an interior point nonlinear optimization tool, was used to optimize the process. Using
surrogate models, these techniques for predicting phase behaviour were integrated into the
optimization process.
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Objective:

Reduce the cost of producing n-tridecanal by taking into account the following factors:

 Energy consumption includes the cost of heating and cooling the equipment as
well as the cost of maintaining process pressure.

 Raw material expenses include 1-Dodecene and Syngas.

 The good recovery in the decanter is a major factor in the decreased catalyst losses.

Operational Restrictions:

 The temperature and pressure of the reaction must remain within safe bounds.

 The ideal temperature for the decanter should induce phase separation without
sacrificing the quality of the final product.

 Below a specific concentration, the catalyst's concentration in the product is high.

Because the surrogate-enhanced optimization was quicker than direct optimization using PC-
SAFT, this allowed for quick exploration of operating conditions as well as improvement of
the economic performance.

Results and Discussion

Surrogate Model Performance
The surrogate models' ability to replicate important phase equilibrium properties, such as gas
solubility, distribution ratios, and phasing separations, was evaluated in relation to PC-
SAFT's capabilities.

 Gaussian Processes (GP) outperformed all other algorithms in the majority of
regression tasks, according to regression models, particularly when it came to
predicting gas solubilities and distribution coefficients. The best estimates of the
PC-SAFT model predictions were obtained by the GP models, which consistently
produced the lowest Root Mean Squared Error (RMSE). Furthermore, their
forecast was able to include quantification of the uncertainty included in the GP
models.

 Artificial Neural Networks (ANN) performed better on phase classification tasks
but poorly on regression tasks. When layers' hyperparameters were adjusted and
regularization strategies were used correctly, ANN classifiers produced an overall
misclassification rate of 1.322%, outperforming both GP and SVM classifiers. In
contrast to inaccurate categorical methods that were unable to forecast multiple
phases, they were also able to capture the phase boundaries of single-phase and
two-phase regions.

 SVM only had a limited level of success, particularly in regression situations with
tiny data sets. But both GP and ANN models fared better than them, especially
when evaluated on larger datasets when GP's stochastic optimization and ANNs'
flexibility predominate.



INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH AND TECHNOLOGY ISSN 2582-7358
Impact Factor 6.328

Peer-Reviewed Journal

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH AND TECHNOLOGY VOLUME
2 ISSUE 6 ( June 2021)

6

The findings demonstrate that GP models' accuracy and measurement of uncertainty make
them ideal for regression tasks. Then, due to their superior ability to handle non-linear
boundaries, ANNs are appropriate for classification tasks.

Optimization Results
Surrogate models were integrated into an optimization environment to forecast the best
operating parameters for the hydroformylation of 1-dodecene from a cost perspective in order
to accomplish the goal. In comparison to the current method based on PC-SAFT, the results
further show the computational and practical efficiency of surrogate-based optimization.

 Efficiency of Optimization: Unlike the PC-SAFT based optimization, which took
hours, the optimization method using surrogate models reached the optimal
solution in a matter of seconds. This significant decrease in computing time
highlights the benefit of using surrogate models for process optimization in real
time.

 Accuracy of Optimization Outcomes: The accuracy of the surrogate
approximations in maintaining the optimization process was validated by the good
agreement between the operating conditions determined using the surrogate
models and those acquired using the PC-SAFT model. The best goal temperature,
pressure, and overall product yields were among the several types of discrepancies
that were evidently minimal and well within engineering standard deviations.

 Economic Perspectives: In addition to practical catalyst recovery techniques and
good product purity, the optimization's results indicated operating parameters that
provided reduced production costs. The ability to rapidly cycle through different
choices was especially helpful when thinking about possible trade-offs between
separation performance, feedstock use, and energy use.

Comparison of Computational Effort and Accuracy

Table 1 summarizes the computational effort and accuracy metrics across the surrogate
models and the original PC-SAFT model.

Model RMSE (Gas
Solubility)

RMSE
(Distribution
Coefficient)

Misclassification
Rate

Computation
Time (per
iteration)

PC-SAFT N/A N/A N/A ~15 minutes
Gaussian
Processes
(GP)

0.012 0.010 2.145% <1 second

Artificial
Neural
Networks
(ANN)

0.015 0.013 1.322% <1 second

Support
Vector
Machines
(SVM)

0.020 0.018 3.412% ~2 seconds
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The following characteristics of the GP model are highlighted in the table:

 a significantly reduced computing time and better regression accuracy.

 Additional benefits mentioned that the model's phase categorization was not as
good as an ANN's.

 the substantial computing complexity, particularly due to the PC-SAFT model's
incompatibility with iterative optimization procedures.

Discussion
The findings also demonstrate that surrogate models can be used as workable alternatives to
the PC-SAFT model in process improvement. Among the main benefits of the surrogate-
based strategy are:

 Scalability: Because surrogate model computations yield results quickly, they can
be applied to real-time process control or large-scale optimization issues.

 Accuracy: Surrogate models, like the PC-SAFT, are sufficiently accurate in
comparison to the original models, which in this instance also ensures the
dependability of the predicted values for engineering applications.

 Flexibility: The range of operating conditions and system setup can be greatly
enhanced by the suggested surrogate models relevant to different datasets created
by PC-SAFT.

These findings demonstrate the value of surrogate modelling in choosing optimization and
process design solutions for chemical engineering, which are otherwise expensive and time-
consuming.

Table 1: Performance Metrics for Optimization

Model
Type

Cost
($/ton)

Optimization
Time (s)

RMSE (cH2,
cCO)

RMSE (Distribution
Coefficients)

ANN 6202.61 0.3 0.00850,
0.01464

0.0746, 0.0408

GP 6257.11 1.5 0.00697,
0.01254

0.0461, 0.0316

SVM 6183.71 0.7 0.00725,
0.01396

0.0576, 0.0383

Best 6143.37 1.1 0.00697,
0.01254

0.0461, 0.0342

Validation and Robustness

Phase equilibria in complex systems were calculated using the PC-SAFT (Perturbed Chain-
Statistical Associating Fluid Theory) model, which was used to validate the optimization
results for this study and gauge the results' robustness. It was verified by examining the
diagrams that the optimization results fall inside the relevant phase equilibrium zones.
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Because it makes the fewest previous assumptions, the informational entropy optimization
provides physically realistic phase behaviour of the system.

Therefore, by changing the beginning point in the optimization space and running multiple
simulations, the concept's robustness was investigated. Unexpectedly, each of these different
initializations produced the same degree of maximum optimization, conclusively refuting the
notion that the optimization process becomes trapped in local optimal states. This strongly
suggests that other global surrogate models, like GP and ANN, which are used in the
optimization process, provide global optimal and can be trusted to perform at their best in a
variety of situations outside of particular ones.

Conclusion

Two surrogate modes that can be effectively used to improve certain chemical processes that
call for laborious phase equilibrium simulations are given particular attention: Gaussian
Process (GP) and Artificial Neural Networks (ANN). Surrogate models are superior to
realistic simulation because they allow for significant optimization while drastically cutting
down on computation time, although at a negligible accuracy cost. The results of this study
open up new directions for future research in the area.Future research could build on this
strategy and use a wider variety of machine learning techniques to adapt future models to
additional complex chemical systems that aren't included in this publication, as is the case
with most analytical work. For many commercial and scientific applications, further
integration may therefore lead to optimization algorithms that are even more precise, efficient,
effective, and simple to scale up.
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