
International Journal of Multidisciplinary Research and Technology
ISSN 2582-7359, Peer Reviewed Journal, Impact Factor 6.325

www.ijmrtjournal.com

Volume 6 Issue 4 (April 2025)11

SECURING THE CLOUD: GENERATING MONITORS FROMMODELS
1Sejal Mathur, 2K. Sai Vaishnavi, 3C. Nivya Sree, 4Farhana Tabassum

1,2,3UG Students of Computer Engineering Department
4Assistant Professor, Department Of Computer Engineering

Stanley College of Engineering And Technology For Women, Hyderabad, India.

ABSTRACT

In cloud computing environments, securing access to system resources is crucial due to the large volume of
resources and users. This paper proposes a robust security framework that combines model-driven cloud
monitoring with adaptive, multi-layer, multi-factor authentication (MFA) to address these challenges effectively.
Using a model-driven approach, our cloud monitor automatically verifies security and functional requirements,
implemented through the Django web framework and validated on the OpenStack platform, to ensure reliability and
reduce manual errors. To further fortify security, an adaptive MFA system dynamically selects authentication
methods based on user attributes like geolocation and browser verification, improving user verification accuracy
while reducing false positives. Additionally, AES-based encryption safeguards sensitive login information against
unauthorized disclosure. Together, this integrated solution enhances access control, intrusion detection, and data
security, providing a comprehensive approach to secure cloud resources and prevent unauthorized access with
minimal inconvenience to legitimate users.

Keywords: Cloud Security, Model-Driven Monitoring, Multi-Layer Authentication (MFA), OpenStack, AES
Encryption, Browser Verification, Data Protection.

INTRODUCTION:

Cloud computing has revolutionized how organizations manage and utilize resources, offering scalable, flexible,
and cost-efficient solutions. However, securing cloud environments is a challenge due to unauthorized access,
privilege escalation, and frequent updates that may introduce vulnerabilities. This study aims to address these
challenges by developing a semi-automated monitoring framework leveraging Unified Modeling Language (UML)
and Object Constraint Language (OCL) to enforce security requirements through behavioral contracts.
Implementing adaptive multi-layer authentication (MFA) and AES encryption, this project strengthens access
control and data security. The framework, developed using Django and validated on OpenStack, ensures continuous
monitoring, dynamic vulnerability management, and compliance assurance.

LITERATURE SURVEY

S.no Year Author(s) Title Study Focus Key Findings

1. 2024 X. Zhou et
al.

Adaptive Cloud
Security with
Reinforcement

Learning

Reinforcement
learning for

adaptive cloud
security

Reduced breaches by
60%

2. 2023
A.M.

Mostafa et
al.

Strengthening
Cloud Security

Multi-factor
authentication
framework

Improved security
by 95%

3.
2022 J. Lee et al. Role of AI in

Cloud Intrusion
Detection

AI-driven intrusion
detection

Reduced response
time by 40%

4. 2021 H. Li et al.
Multi-layer Access
Control in Cloud

Storage

Multi-layer access
control

Secured 98% of
sensitive data

http://www.ijmrtjournal.com


International Journal of Multidisciplinary Research and Technology
ISSN 2582-7359, Peer Reviewed Journal, Impact Factor 6.325

www.ijmrtjournal.com

Volume 6 Issue 4 (April 2025)12

5.
2020 Min Zhao

et al.
Homomorphic
Encryption

Technology for
Cloud

Homomorphic
encryption
comparison

Paillier offers high
security, RSA
balances speed

6.
2018 Irum Rauf

et al.
Generating Cloud
Monitors from

Models

Model-driven
cloud monitoring

system

Detected 90% of
policy violations

EXISTING SYSTEM:

Private clouds are essential for many organizations as they provide dedicated environments for internal use.
However, creating secure private clouds for a large number of users is a significant challenge. These systems
typically offer REST APIs (Representational State Transfer Application Programming Interfaces) to interact with
their resources. Each piece of information is accessible through unique URIs, resulting in a large number of access
points.

Disadvantages:

 Data Breaches: Data loss and unauthorized access are major risks in cloud environments.

 Complex Access Points: The numerous URIs make it difficult for security experts to monitor and protect
every access point, increasing the risk of breaches or privilege escalation attacks.

 Frequent Updates: Open-source cloud systems are regularly updated by multiple contributors. These
updates may unintentionally remove or modify features, potentially violating previous security properties
and introducing vulnerabilities.

PROPOSED SYSTEM:

The proposed system introduces a semi-automated cloud monitoring framework to address the security challenges
of private clouds. It utilizes UML (Unified Modeling Language) diagrams and OCL (Object Constraint Language)
to define the behavioral interface and enforce security constraints. This framework focuses on monitoring API
behavior and verifying pre- and post-conditions for API methods using a Design by Contract (DbC) approach.

Advantages:

 Stateful Monitoring: The system generates wrappers to simulate real-world usage scenarios, defining
security-rich behavioral contracts for API monitoring.

 Enhanced Traceability: It ensures that security requirements are properly integrated into the code, enabling
security experts to monitor compliance during testing.

 Semi-Automated Implementation: The framework is implemented using Django, a Python web framework,
to automate code generation, improving efficiency and scalability.

http://www.ijmrtjournal.com


International Journal of Multidisciplinary Research and Technology
ISSN 2582-7359, Peer Reviewed Journal, Impact Factor 6.325

www.ijmrtjournal.com

Volume 6 Issue 4 (April 2025)13

SYSTEM ARCHITECTURE:

Fig:- System Architecture

UML DIAGRAMS:

UML stands for Unified Modelling Language. UML is a standardized general-purpose modelling language in the
field of object-oriented software engineering. The standard is managed, and was created by, the Object
Management Group. The goal is for UML to become a common language for creating models of object-oriented
computer software. In its current form UML is comprised of two major components: A Meta-model and a notation.
In the future, some form of method or process may also be added to or associated with, UML.

Fig:- Sequence Diagram

http://www.ijmrtjournal.com


International Journal of Multidisciplinary Research and Technology
ISSN 2582-7359, Peer Reviewed Journal, Impact Factor 6.325

www.ijmrtjournal.com

Volume 6 Issue 4 (April 2025)14

IMPLEMENTATION

This chapter describes the implementation of a Cloud Monitoring Framework that enhances cloud security by
enforcing security policies through model-driven validation. The system is built using the Django web framework
and validated with Open Stack.

The implementation is organized into the following folders and files:

key implementation components, including API routing, security enforcement, logging, configuration, and testing.

1. API Routing (cloudmonitor/urls.py): To enable communication between users and the cloud monitoring
system, API endpoints are defined in the urls.py file. These endpoints allow requests such as monitoring and
modifying cloud resources.

2. Security & API Handling (cloudmonitor/views.py): The core functionality of this module includes:

 Checking user authentication before executing critical operations.

 Processing API requests (e.g., DELETE for removing a volume).

 Returning appropriate responses, either confirming success or denying access.

3. Logging Unauthorized Access (cloudmonitor/views.py):

User Role Verification:

The views use request.session['role'] to determine the role of the user attempting to access a resource. This helps in
identifying whether the user has the appropriate permissions for the requested action (e.g., user, admin, or cloud).

If the user is unauthorized (i.e., does not have permission to access a resource or perform a certain action), the
system should log the event for later analysis.

Tracking Unauthorized Access Attempts:

When an unauthorized user attempts to access or modify a resource, such as trying to delete or update files without
proper permission, the application should record the details of this attempt.

These logs should include:

 Username: The identity of the unauthorized user, often fetched from request.session['role'] or
request.session['email'].

http://www.ijmrtjournal.com


International Journal of Multidisciplinary Research and Technology
ISSN 2582-7359, Peer Reviewed Journal, Impact Factor 6.325

www.ijmrtjournal.com

Volume 6 Issue 4 (April 2025)15

 Timestamp: The date and time of the attempted access, which can be logged using Python’s logging
module or Django’s built-in logging framework.

 Resource ID: The ID of the resource that the user tried to access or modify (e.g., the file ID or volume ID),
which helps in tracking which resource was targeted.

Logging Mechanism:

 The unauthorized access attempts should be logged in a dedicated log file, which will contain details of each
incident, such as the attempted action (GET, POST, DELETE), the user’s role, and the resource ID.

 A logging library or Django’s logging framework can be used to capture these events. This ensures the
logs are stored securely and can be easily reviewed by system administrators.

Response to Unauthorized Attempts:

 When an unauthorized access attempt is made (e.g., a user tries to delete a file they don't have permission
for), the system should return an appropriate response indicating the lack of authorization.

 The response should be something like {"error": "Unauthorized"}, which helps in identifying failed
attempts and preventing further unauthorized actions.

 The log will confirm that the unauthorized access attempt has been tracked even though the user cannot
perform the action.

Project Configuration (cloudmonitor/settings.py): The settings.py file is a critical component in ensuring the
Django application runs smoothly. It contains various configurations related to the project's environment, security,
databases, middleware, and more. Below is a breakdown of key configurations:

Base Directory Setup:

 The BASE_DIR setting is used to define the project's root directory, which is useful for building paths
relative to the project root.

 It helps to manage file paths dynamically, such as for media or static files.

Security Settings:

 SECRET_KEY: A secret key for the application used in cryptographic operations like password hashing.
This key should remain secret in production.

 DEBUG: This is set to True during development for easy debugging, but it should be set to False in
production.

 ALLOWED_HOSTS: A list of host/domain names that the application can serve. In production, this should
include the allowed domain names.

Installed Applications:

 This list includes essential apps like django.contrib.admin, django.contrib.auth, django.contrib.sessions,
rest_framework, and custom apps like users, admins, and clouds

 rest_framework is used to build RESTful APIs, and corsheaders is configured to handle Cross-Origin
Resource Sharing.

Middleware:

 Middleware components that manage requests and responses, including security, session management, and
CSRF protection.

 CorsMiddleware is included to manage cross-origin requests.

http://www.ijmrtjournal.com


International Journal of Multidisciplinary Research and Technology
ISSN 2582-7359, Peer Reviewed Journal, Impact Factor 6.325

www.ijmrtjournal.com

Volume 6 Issue 4 (April 2025)16

Template Configuration:

 The TEMPLATES setting specifies the backend (DjangoTemplates) and includes template directories for
rendering HTML views.

 The DIRS setting includes the path to the assets/templates directory, where the HTML templates are stored.

Database Configuration:

 DATABASES: This project uses SQLite as the default database engine, stored in the project root
(db.sqlite3). This can be replaced with other databases like PostgreSQL or MySQL in production.

Password Validation:

 Password validators are configured to enforce security measures like minimum length and complexity in
passwords. These validators ensure user account security.

Static and Media Files:

 static_url: Defines the URL path for static files (e.g., CSS, JavaScript, and images).

 media_url and media_root: Define the path and URL for user-uploaded media files, stored in the media
directory.

1. Testing the Cloud Monitor:

Command Prompt window running a Django web application called "cloudmonitor". Here's what's happening in
the command sequence:

1) The user navigated to the cloudmonitor directory (C:\cloudmonitor25\cloudmonitor)

2) They activated a Python virtual environment using "venv\Scripts\activate.bat"

3) They ran "python manage.py runserver" to start the Django development server

4) The server performed system checks with no issues detected

5) The server started on March 24, 2025, at 16:04:06, using Django version 5.1.5

6) The development server is running at http://127.0.0.1:8000/ (localhost port 8000)

http://127.0.0.1:8000/
http://www.ijmrtjournal.com


International Journal of Multidisciplinary Research and Technology
ISSN 2582-7359, Peer Reviewed Journal, Impact Factor 6.325

www.ijmrtjournal.com

Volume 6 Issue 4 (April 2025)17

The rest of the output shows HTTP GET requests as the application loads various resources:

 CSS files (like bootstrap.css, style.css)

 JavaScript files (jquery, modernizr, etc.)

 Images

 Login pages

This indicates the application is successfully running and serving web content. There's one "404 Not Found" error
for favicon.ico, but this is minor and doesn't affect functionality.

This represents the final implementation step where the Django web application is operational and responding to
browser requests, confirming successful deployment of the cloudmonitor system in a development environment.

RESULTS

Fig 1:-Home Page

Fig 2:- User Registration page

http://www.ijmrtjournal.com


International Journal of Multidisciplinary Research and Technology
ISSN 2582-7359, Peer Reviewed Journal, Impact Factor 6.325

www.ijmrtjournal.com

Volume 6 Issue 4 (April 2025)18

Fig 3:- User login page

Fig 4:- Admin page

http://www.ijmrtjournal.com


International Journal of Multidisciplinary Research and Technology
ISSN 2582-7359, Peer Reviewed Journal, Impact Factor 6.325

www.ijmrtjournal.com

Volume 6 Issue 4 (April 2025)19

Fig 5:- Admin approve user

Fig 6:- User app creation

http://www.ijmrtjournal.com


International Journal of Multidisciplinary Research and Technology
ISSN 2582-7359, Peer Reviewed Journal, Impact Factor 6.325

www.ijmrtjournal.com

Volume 6 Issue 4 (April 2025)20

Fig 7:- User app check

Fig 8:- Cloud server

Fig 9:- Cloud approve page

http://www.ijmrtjournal.com


International Journal of Multidisciplinary Research and Technology
ISSN 2582-7359, Peer Reviewed Journal, Impact Factor 6.325

www.ijmrtjournal.com

Volume 6 Issue 4 (April 2025)21

Fig 10:- Upload data to cloud

Fig 11:- Django rest snippet

Fig 12:- User options

http://www.ijmrtjournal.com


International Journal of Multidisciplinary Research and Technology
ISSN 2582-7359, Peer Reviewed Journal, Impact Factor 6.325

www.ijmrtjournal.com

Volume 6 Issue 4 (April 2025)22

Fig 13:- Edit File

CONCLUSION

The proposed framework for monitoring private cloud environments effectively addresses critical challenges in
cloud security and API management. By leveraging UML models and OCL constraints, it provides a structured
approach to enforcing security and functional requirements. The integration of Design by Contract (DbC)
principles ensures that API preconditions and postconditions are verifiable, enhancing the reliability of the system.
Additionally, the semi-automated tool developed using Django simplifies the process of generating security-
enriched behavioral contracts, making it easier to trace and validate security requirements during testing phases.
The framework’s validation using OpenStack demonstrates its practical applicability, showing promising results in
mitigating vulnerabilities and maintaining compliance.

This approach not only enhances the security of private clouds but also provides scalability for hybrid and multi-
cloud environments. By automating critical aspects of cloud monitoring, the framework minimizes manual efforts
while ensuring robust protection against data breaches and unauthorized access. Future advancements, such as
integrating AI-driven threat detection and blockchain for tamper-proof logs, could further strengthen the system.
Overall, the framework establishes a foundation for secure and intelligent private cloud management, paving the
way for more resilient and adaptable cloud infrastructures in the future.

FUTURE SCOPE:

The future scope of this project includes integrating AI-driven threat detection to identify anomalies in real-time
and implementing blockchain for enhanced data security and transparency. Automated incident response systems
can minimize manual intervention, while Zero Trust Architecture (ZTA) ensures strict access controls. With
advancements in quantum computing, incorporating quantum-resistant encryption will safeguard cloud data. Edge
computing can enable real-time security monitoring, reducing latency in IoT-enabled environments. Additionally,
compliance automation can streamline adherence to security regulations, and decentralized identity management
using blockchain can enhance authentication. These advancements will make cloud monitoring more secure,
efficient, and intelligent.

REFERENCES

1. M. Mostafa et al. (2023). Strengthening Cloud Security: Multi-Factor Authentication Framework.
2. J. Lee et al. (2022). Role of AI in Cloud Intrusion Detection.
3. Irum Rauf et al. (2018). Generating Cloud Monitors from Models.
4. Min Zhao et al. (2020). Homomorphic Encryption in Cloud Security.
5. X. Zhou et al. (2024). Adaptive Cloud Security with Reinforcement Learning.
6. H. Li et al. (2021). Multi-layer Access Control in Cloud Storage.

http://www.ijmrtjournal.com

