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Abstract:

This paper presents the study of Calculus and their applications and Adams- Bash forth - Multon algorithm has
been extended to solve delay differential equation fractional order. This report is aimed at the engineering and/or
scientific professional who wishes to learn about fractional Calculus and its possible applications in their field(s) of
study.
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Introduction:

The subject of Calculus has applications in diverse and widespread fields of engineering and science such as
electromagnetics, viscoelasticity, fluid mechanics, electrochemistry, biological population models, optics, and
signals processing. It has been used to model physical and engineering processes that are found to be best described
by fractional differential equations. The derivative models are used for accurate modelling of those systems that
require accurate modelling of damping. In these fields, various analytical and numerical methods including their
applications to new problems have been proposed in recent years. Mathematical modelling of real-life problems
usually results in fractional differential equations and various other problems involving special functions of
mathematical physics as well as their generalizations in one or more variables. In addition, most physical
phenomena of the issue. Accordingly, various papers on fractional differential equations have been included in this
special issue after completing a heedful, rigorous, and peer-review process. The issue of robust stability for
fractional order Hopfield neural networks with parameter uncertainties is rigorously investigated. Based on the
fractional order Lyapunov direct method, the sufficient condition of the existence, uniqueness, and globally robust
stability of the equilibrium point is presented. Moreover, the sufficient condition of the robust synchronization
between such neural systems with the same parameter uncertainties is proposed owing to the robust stability
analysis of its synchronization error system. In addition, for different parameter uncertainties, the quasi-
synchronization between the classes of neural networks is investigated with linear control. And the quasi-
synchronization error bound can be controlled by choosing the suitable control parameters. Moreover, robust
synchronization and quasi-synchronization between the classes of neural networks are discussed. Several wavelet
methods such as Haar wavelet method, cubic B-spline wavelet method, Legendre wavelet method, Legendre
multiwavelet method, and Chebyshev wavelet method have been examined for solving fractional differential
equations. The Legendre multiwavelet method along with Galerkin method can be applied for providing
approximate solutions for initial value problems of fractional nonlinear partial differential equations. Using these
wavelet methods the fractional differential equations have been reduced to a system of algebraic equations and this
system can be easily solved by any usual methods. The distributed coordination of fractional multiagent systems
with external disturbances is also discussed. The state observer of fractional dynamical system is presented, and an
adaptive pinning controller is designed for a little part of agents in multiagent systems without disturbances. Based
on disturbance observers, the controllers are composited with the pinning controller and the state observer. By
applying the stability theory of fractional order dynamical systems, the distributed coordination of fractional
multiagent systems with external disturbances can be reached asymptotically. Two integral operators involving
Appell's functions or Horn's function in the kernel are considered. Composition of such functions with generalized
Bessel functions of the first kind is expressed in terms of generalized Wright function and generalized hyper
geometric series. The existence of solutions for a nonlinear boundary value problem of impulsive fractional
differential equations is studied with - Laplacian operator. The research of boundary value problems for Laplacian
equations of fractional order has just begun in recent years.

Most of the mathematical theory applicable to the study of fractional Calculus was developed prior to the turn of
the 20th century. However it is in the past 100 years that the most intriguing leaps in engineering and scientific
application have been found. The mathematics has in some cases had to change to meet the requirements of
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physical reality. Caputo reformulated the more 'classic' definition of the Riemann-Liouville fractional derivative in
order to use integer order initial conditions to solve his fractional order differential equations [21]. As recently as
1996, Kolowankar reformulated again, the Riemann-Liouville fractional derivative in order to differentiate no-
where differentiable fractal functions [22]. Leibniz's response, based on studies over the intervening 300 years, has
proven at least half right. It is clear that within the 20th century especially numerous applications and physical
manifestations of fractional Calculus have been found. However, these applications and the mathematical
background surrounding fractional Calculus are far from paradoxical. While the physical meaning is difficult
(arguably impossible) to grasp, the definitions them selves are no more rigorous than those of their integer order
counterparts. Due to its applicability in a variety of fields Fractional Calculus (FC) is receiving importance in
various branches of Science and Engineering. Unlike ordinary derivative operator, Fractional Derivative Operator
(FDO) is non-local in nature. Due to non-local nature of FDO, it can formulate processes having memory and
hereditary properties. Fractional calculus is finding applications especially in viscoelasticity, anomalous diffusion
process, electro chemistry, fluid flow and so on [4, 17, 18]. Delay Differential Equation (DDE) is a differential
equation in which the derivative of the function at any time depends on the solution at previous time. Introduction
of delay in the model enriches its dynamics and allows a precise description of the real life phenomena. DDEs are
proved useful in control systems [8], lasers, traffic models [3], metal cutting, epidemiology, neuroscience,
population dynamics [11], chemical kinetics [7] etc. Even in one dimensional systems interesting phenomena like
Chaos are observed (cf. Example 1). In DDE one has to provide history of the system over the delay interval [-_, 0)
as the initial condition. Due to this reason delay systems are infinite dimensional in nature. Because of infinite
dimensionality the DDEs are difficult to analyse analytically [9] and hence the numerical solutions play an
important role. Existence and uniqueness theorems on fractional delay differential equations are discussed in [1, 10,
14, 15]. In this paper we extend the fractional predictor-corrector scheme to solve DDEs of fractional order. Some
numerical examples are presented to explain the method.

Discussion:

Fractional Integral Equations :

First kind :

The first form of the fractional integral Equation is given by the form in (1)

1
Γ(�)

�
∫
0

�(�)
(�−�)1−� �� = � � , 0<� < 1 (1)

This may also be written as

���(�) = �(�) (2)

The solution of this kind is straight forward, and written

u(t)=���(�) (3)

One may be tempted to use the right Hand or Caputo definition for the fractional derivative in this situation
interchangeably with the LHD, however it must be underscored that not in every situation does ��

∗��� � = �(�).
In fact, it will be shown below that from a solution arrived at through use of the Laplace transform, a remainder
term arises when the RHD is used to solve (1).

In the Laplacian domain, integral equations of the first kind assume the form below :

��� � = Φ� � ∗ � � ⇒ � Φ� � ∗ � � =
∼
�(�)

�� (4)

Applied Science Periodical [Vol. XV (4), November 13]

Algebraically, we can recorder the result in (4) into one of two forms
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∼
� � = ��∼

�(�) ⇒ �
∼
�(�)

�1−� (5)

or
∼
� � = ��∼

� � ⇒ 1
�1−� �

∼
� � − � � + �(0)

�1−� (6)

Inverting the first form back into the time domain, we get

� � = 1
Γ(1−�)

�
��

�
∫
0

�(�)
(�−�)� �� = �(�) (7)

which is equivalent to solution of the equation with the LHD. The second form can be similarly inverted to yield

� � = 1
Γ(1−�)

�
∫
0

�'(�)
(�−�)� �� = � � + �(0) �−�

Γ(1−�)
(8)

The first element of this result is the RHD, but as mentioned above, one must include a remainder term that is
dependent on the value of the function at 0.

Second Kind :

Integral equations of the second kind follow the form on (9).

� � + �
Γ(�)

�
∫
0

�(�)
(�−�)1−� �� = � � ⇒ 1 + � �� � � = �(�) (9)

The solution to (9) is found to be

� � = (1 − � ��)−1� � = (1 −
∞
∑

� = 1
( − �)����)�(�) = �(�) +

∞
∑

� = 1
( − �)� Φ�� ∗ �(�) (10)

�� � =
∞
∑

� = 0

��

Γ(��+1)
, � > 0.

We can show that

�� −��� =
∞
∑

� = 0

(−� ��)�

Γ(��+1)
(11)

By taking the first derivative of (12), we eliminate the first term in the �� −��� expansion and recover the form of
found in (11). Thus, the solution to the integral equation of the second kind can be formally written as

� � = � � + �
��

�� −��� ∗ �(�) (12)

The same solution can be reached by using Laplace Transofmr. Start by taking the Laplace transform of (9).

� (1 + �)��(�) = � �(�) → 1 + �
��

∼
� � =

∼
� � (13)

Equation (13) can be rearranged in many ways, but one in particular leads us back to the result presented in (12).
∼
� � = � ��−1

��+� − 1
∼
� � +

∼
� � (14)

Equation (14) is next inverted back into the normal function domain. In order to do this one must address
comprehend the Laplace transform of a special form of the Mittag Leffler Function, given in (15).

http://www.ijmrtjournal.com


International Journal of Multidisciplinary Research and Technology
ISSN 2582-7359, Peer Reviewed Journal, Impact Factor 6.325

www.ijmrtjournal.com

Volume 6 Issue 5 (May 2025)48

� �� −��� = ��−1

��+� (15)

By the relationship given in

� � � (�) = ��∼
� � −

� − 1
∑

� = 0
��−�−1�(�)(0) = ��∼

� � −
� − 1

∑
� = 0

���(�−�−1) (0)

it is clear that what is between the brackets in the LHS of (14) is simply the Laplace transform of the first derivative
of the LHS of (15), i.e.

� ��
(1) −��� = � ��−1

��+� − 1 (16)

From the definition of the Laplace convolution given in

� � ∗ � � ≔
�
∫
0

�(� − �)�(�)�� = �(�) ∗ �(�),

is easily seen how the inverse of (14) would yield the same result shown in (12).

Definition A : Let ������� � ≥− 1, then the (left-sided) Riemann-Liouville integral of order �, � > 0 is given by

���� � = 1
Γ(�)

�
∫
0

(� − �)�−1�(�)��, � > 0

Definition B : The (left side) cuputo fraction derivative of �, ��� �
−1, ���� ∪ {0} is define as,

��
�� � = ��

��� � � , μ = m

= �� − �
�

���(�)
��� , � − 1 < � < �, �� ��

Note that for � − 1 < � < �, �� ��

��� ��
�� � = � � −

� − 1
Σ

� = 0

���
��� (0) ��

�!
,

����� = Γ(�+1)
Γ(�+�+1)

��+�

Example : Consider a fractional order version of the DDE given in

��
�� � = 2�(�−2)

1+�(�−2)9.65 − � � , (17)

y(t)=0.5, t≤ 0. (18)

We have taken the step size h = 0.01 in this example. Fig. 1(a) shows the solution y(t) of system (17) - (18) for a =
0.97, whereas Fig. 1(b) shows phase portrait of the system i.e. plot of y(t) versus y(t - 2) for the same value of �. It
may be observed from these figures that the system shows a periodic (chaotic) behavior. In the following
experiments we have decreased the value of a and observed that the system becomes periodic for �<0.87. The
periodic behavior of the system can be observed in Fig. 1(c) and 1(d) where we have considered � = 0.85.
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Conclusion:

There are very few results about Chaos synchronization of the fractional order time delay chaotic systems available
in the literature. Here Chaos synchronization of different fractional order time-delay chaotic systems is also
considered. Based on the Laplace transform theory, the conditions for achieving synchronization of different
fractional order time-delay chaotic systems are analyzed by use of active control technique. The numerical
simulations show that the modified equation is more reliable in predicting the movement of pollution in the deform
able aquifers than the constant fractional and integer derivatives. At present, the use of fractional order partial
differential equation in real-physical systems is commonly encountered in the fields of science and engineering.
The efficient computational tools are required for analytical and numerical approximations of such physical models.
The present issue has addressed recent trends and developments regarding the analytical and numerical methods
that may be used in the fractional order dynamical systems. Eventually, it may be expected that the present special
issue would certainly helpful to explore the researchers with their new arising fractional order problems and elevate
the efficiency and accuracy of the solution methods for those problems in use now a days.

Interest in Fractional Calculus for many years was purely mathematic, and it is not hard to see why. Only the very
basic concepts regarding fractional order Calculus were addressed here, and yet it is evident that the study
fractional Calculus opens the mind to entirely new branches of thought. It fills in the gaps of traditional Calculus in
ways that as of yet, no one completely understands. Despite the infancy of this field, the small sampling of
applicable problems given here are merely a tiny fraction of what is currently being studied. Adams-Bashforth
Moulton method is extended to solve fractional differential equations involving delay. Some interesting fractional
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delay differential equations arising in Biology have been solved. It is observed that even one dimensional delayed
systems of fractional order show chaotic behaviour, and below some critical order, the system changes its nature
and becomes periodic. In some cases it is observed that the phase portrait gets stretched as the order of the
derivative is reduced.
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